- - B.A./B.Sc. (General) 1st Semester 1128 MATHEMATICS

Paper-III: Trigonometry and Matrices

Time Allowed: Three Hours [Maximum Marks: 30 Note:— Attempt five questions in all by selecting at least two questions from each unit.

UNIT-I

1. (a) If $a = cis \alpha$, $b = cis \beta$, c = cis y and a + b + c = 0. Then prove that:

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$$

(b) If α and β are the roots of $x^2 - 2x + 4 = 0$, prove that :

$$\alpha^n + \beta^n = 2^{n+1} \cos \frac{n\pi}{3}.$$
 3,3

- (a) Solve x⁷ = 1 and prove that the sum of the nth powers of the roots is 7 or zero according as n is or not multiple of 7.
 - (b) Prove that:

$$\cos^7 \theta = \frac{1}{2^6} [\cos 7\theta + 7 \cos 5\theta + 21 \cos 3\theta + 35 \cos \theta].$$

3,3

- 3. (a) If $\sin (\theta + i\phi) = \tan \alpha + i \sec \alpha$, show that : $\cos 2\theta \cosh 2\phi = 3$.
 - (b) If $cos(\theta + i\phi) = r(Cos \alpha + i sin \alpha)$, then prove that :

$$\phi = \frac{1}{2} \log \frac{\sin(\theta - \alpha)}{\sin(\theta + \alpha)}.$$
 3,3

4. (a) For α , $\beta \in \mathbb{C}$, $\beta \neq 2n\pi$, $n \in \mathbb{Z}$, show that : $\cos \alpha + \cos (\alpha + \beta) + \cos (\alpha + \alpha\beta) + \dots + \cos (2\alpha(n-1)\beta)$

$$=\frac{\cos\left(\alpha+\frac{n-1}{2}\beta\right)\sin\frac{n\beta}{2}}{\sin\frac{\beta}{2}}.$$

(b) Prove that:

$$1 + \frac{1}{3} - \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{2 | 2|}.$$
 3,3

UNIT-II

- (a) Show that every Hermitian Matrix A can be uniquely expressed as P + iQ, where P and Q are real symmetric and real skew symmetric matrices respectively. Also show that A⁰A is real iff PQ = - QP.
 - (b) Check for the linear dependence of the following system of vectors: u = (1, -1, 1), v = (2, 1, 1), w = (3, 0, 2). If dependent, find the relation between them. 3,3
- 6. (a) Find the rank of the matrix $\begin{bmatrix} 9 & 0 & 2 & 3 \\ 0 & 1 & 5 & 6 \\ 4 & 5 & 3 & 0 \end{bmatrix}$ by

reducing it to normal form.

(b) Express the following matrix as the sum of a Hermitian and Skew Hermitian matrix:

$$\begin{bmatrix} 2-i & 3 & 1+i \\ -5 & 0 & -6i \\ 7 & i & -3+2i \end{bmatrix}$$

7. (a) Find the value of k so that the equations:

$$x - 2y + z = 0$$

$$3x - y + 2z = 0$$

$$y + kz = 0 \text{ have}$$

- (i) a unique solution, (ii) infinitely many solutions. Also find solutions for these values of k.
- (b) Find values of λ and μ for which the system of equations :

$$x + y + z = 6$$

$$x + 2y + 3z = 10$$

$$x + 2y + \lambda z = \mu \text{ has}$$

- (i) no solution, (ii) a unique solution, (iii) an infinite number of solutions.
- 8. (a) State and prove Cayley-Hamilton theorem.
 - (b) Check whether the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 6 \\ 0 & 4 & 9 \end{bmatrix}$ is

diagonalizable or not.

3,3

3,3